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Abstract Using addition theorems for complete ortho-
normal sets of exponential type orbitals in the
momentum representation introduced by the author,
the addition theorems are established for Slater type
orbitals in momentum space. With the help of these
addition theorems, the general series expansion for-
mulae in terms of the product of two-center overlap
integrals are established for the three-center overlap
integrals that arise in the solution of atomic and
molecular problems occurring when explicitly corre-
lated methods are employed. The formulae obtained
for addition theorems and three-center overlap inte-
grals are valid for arbitrary location and parameters
of orbitals.
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Introduction

Complete orthonormal sets of exponential-type orbi-
tals play a significant role in the theory and applica-
tion to quantum mechanics of atoms, molecules and
solids [1, 2]. The importance of these orbitals is due to
the fact that their addition theorems are very useful in
the calculation of multicenter multielectron integrals
over Slater type orbitals (STOs) appearing in the
determination of various properties of molecules. Ap-
proaches presented in the literature for the evaluation
of multicenter integrals consist of using the relatively
complicated addition theorems of STOs to separate
the integration variables from those related to the

geometry of the molecule [3–24]. We will give
improvements on some of the existing results. In
previous work [25], by the use of addition theorems
for STOs in coordinate representation, all the multi-
center multielectron integrals were expressed in terms
of two-center and three-center overlap integrals, the
evaluation of which was presented in Ref. [26]. The
purpose of this work is to establish the addition the-
orems for STOs in momentum space, and to yield a
new method for calculation of three-center overlap
integrals appearing in the theory of multicenter mul-
tielectron integrals.

Addition theorems for STOs in momentum space

In order to establish addition theorems for STOs
in momentum space, we shall use the following
addition relations for complete orthonormal sets of
exponential-type orbitals in the momentum represen-
tation [27]:
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where a =1,0,�1,�2,..., and z=2f. The Fnlm
a and �Ua

nlm
are represented as finite linear combinations of STOs in
the momentum space by
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and, conversely,
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See Refs. [27] and [28] for the exact definition of

coefficients Bnlm,l vr
aNLM , xnl

al and �xal
nl occurring in Eqs. 1, 2,

3 and 4.
Taking into account Eqs. 1, 2 and 3 in Eq. 4 we ob-

tain:

Unlm f;~k �~p
� �

¼ 4pzð Þ3=2
X1
l¼1

Xl�1

v¼0

Xv

r¼�v

Xnþlþ1

N¼1

XN�1
L¼0

XL

M¼�L

DaNLM
nlm;lvrU

a�
NLM z;~pð Þ

 !
�Ua

lvr f;~k
� �

; ð5Þ

where

DaNLM
nlm;lvr ¼

Xn

l0¼lþ1
�xal

nl0B
aNLM
nlm;l0vr: ð6Þ

Now we use the following identity:
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Then, we obtain finally for the addition theorems of
STOs in the momentum space the following relations:
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where a =1, 0, �1, �2, ..., and
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Now we can move on to the evaluation of three-
center overlap integrals occurring in the multicenter
multielectron integrals over STOs.

Evaluation of three-center overlap integrals

Three-center overlap integrals in the molecular coordi-
nate system are as follows
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where pi � nilimi I ¼ 1; 2; 3ð Þ;~r ¼~ra;~r �~Rac ¼~rc;~r�
~Rab ¼~rb and vp1 f1;~rað Þ; vp2 f2;~rbð Þ and vp3 f3;~rcð Þ are the
normalized complex or real STOs centered on the nuclei
a, c and b, respectively, defined by
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Here the functions Slm are complex (Slm ” Ylm) or
real spherical harmonics (SH) defined by [29]
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for real SH. In Eq. 12, Pl | m| are normalized associated
Legendre functions.

In order to evaluate three-center overlap integrals, we
use in Eq. 10 the Fourier transform convolution theo-
rem. Then we obtain:
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where vnlm f;~rð Þ and Unlm f;~k
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Fourier transforms given by
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To evaluate the integral in Eq. 15 we need the fol-
lowing relation for the Fourier transform of two-center
overlap integrals:
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Now we take Eq. 18 into account in Eq. 15 for the
addition theorems of the function Up3 f3;~k1 �~k2

� �
and

Eq. 18 for the Fourier transform of two-center overlap
integrals. Then, we obtain finally for the three-center
overlap integrals in terms of the product of two-center
overlap integrals the following series expansion formulae:
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where a=1, 0 , �1, �2, ...
As can be seen from Eq. 19, with the help of the

addition theorems for STOs in momentum space that
have been established in this work, we can calculate the
three-center overlap integrals by the use of two-center
overlap integrals, for the computation of which efficient
computer programs specially useful for large quantum
numbers are available in our group [30]. Thus, the two-
center overlap integrals can be utilized as a basis in the

calculation of three-center overlap integrals, therefore,
in the evaluation of multicenter multielectron integrals
of arbitrary central and noncentral potentials.

Numerical results and discussion

Analytical formulae have been presented for compu-
tation of the three-center overlap integrals, which occur
as part of the overall integration problem that arises in
electronic structure computations using Slater-orbital
basis functions. The two-center overlap integrals can be
utilized as a basis in the calculation of these integrals,
therefore, in the solution of multielectron problem
when a correlated potentials approximation is em-
ployed.

Three-center overlap integrals have not been studied
in the literature so far. For these integrals in this work
we obtained analytical formulae in terms of two-center
overlap integrals. The accuracy of the resulting calcu-
lations of three-center overlap integrals was tested by the
use of different methods in which we utilize the different
complete orthonormal sets of Y1,Y0 and Y�1 ETOs
introduced in Ref. [28].

The convergence of the series in Eq. 19 for m06l0 � 1
and r06l0 � 1 was tested, where l0; m0 and r0 are the
upper limits of indices l,m and r, respectively. The re-
sults of series accuracy Dfl0m0r0 ¼ fl0l0�1l0�1 � fl0m0r0 for
S210,211,100 are shown in Fig. 1. Here, the quantities
f ¼ fl0l0�1l0�1 are the values of integrals for m0 ¼ l0 � 1
and r0 ¼ l0 � 1 .

The results of calculations for three-center overlap
integrals on a Pentium III 800 Mhz computer (using
Turbo Pascal) are given in Table 1. The comparative
values obtained from Y1 and Y0-ETOs and the CPU
time in milliseconds are given in the table. As can be seen
from the table, the accuracy and the CPU time are sat-
isfactory. Figure 1 shows that the convergence for a gi-
ven a, is more rapid for small R, and it deteriorates as R
increases. An accuracy of 10�5 is obtained for l =12.
Greater accuracy is easily attainable by the use of more
terms of expansion in Eq. 19.

It should be noted that the algorithm presented in
this study can be used to calculate any multicenter
multielectron integral of arbitrary central and noncen-
tral potential for the arbitrary values of screening
constants, quantum numbers and location of STOs (see
Ref. [25]).

Table 1 Comparison of methods of computing three-center overlap integrals Sacb for l=12 (in au)

n l m f n1 l1 m1 f1 n2 l2 m2 f2 Rbc hbc /bc Rca hca /ca a=0 a=1 CPU (ms)

2 0 0 5.8 2 0 0 3.6 2 0 0 2.7 0.4 100 240 0.8 144 140 7.8435843096E-01 7.843586656E-01 8.3
2 1 0 2.4 2 0 0 1.3 1 0 0 4.2 0.2 60 90 0.7 120 180 �1.5504804913E-01 �1.5504683691E-01 11.9
2 1 0 7.2 2 1 0 3.1 1 0 0 5.4 0.4 20 270 0.7 45 45 4.1310616384E-01 4.1310534138E-01 14.1
2 1 1 8.5 1 0 0 6.4 1 0 0 7.2 0.6 80 360 0.5 126 100 2.3374656418E-01 2.3375835540E-01 17.7
2 1 0 5.7 2 1 0 4.3 2 1 0 2.5 0.2 60 180 0.4 36 160 �6.5394921686E-01 �6.5394529848E-01 20.5

-25

-15

-5

5

15

25

6 7 8 9 10 11 12 13 14

R = 1.4

R = 2.1

R = 0.6

Fig. 1 Convergence of the series in Eq. 19 for the three-center
overlap integrals S210, 211, 100 for various values of R=Rab as a
function of the number of summation terms a=1, f1=4.3, f2=6.4,
f3=2.3, hab-45�, /_ab=150 �, R_bc=0.6, hbc=60�,/_bc=120�
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